Mark schemes

1. (a) hold thumb first finger and second finger (of left hand) at right angles to each other allow first two fingers/index and middle for first and second finger throughout
second finger represents the current pointing out of the paper
first finger represents the field pointing downwards
thumb points in the direction of the force / thrust / acceleration
(therefore) the rod moves left to right allow correct description (eg away from the magnet) dependent on scoring marking point 3 or 4
(b) decrease the resistance of the variable resistor allow increase the current/pd
use a stronger magnet allow use a magnet with a greater flux density
(c) $\mathrm{F}=0.30 \times 1.7 \times 0.050$

$$
F=0.0255(N)
$$

$$
m=0.004(0 \mathrm{~kg})
$$

this mark may be awarded if m is incorrectly / not converted and / or F is incorrectly calculated
$a=0.0255 / 0.0040$
or
$a=6.375$
this mark may be awarded if m is incorrectly / not converted and / or F is incorrectly calculated
$\Delta v=6.375 \times 0.15=0.95625(\mathrm{~m} / \mathrm{s})$
allow a correct calculation using an incorrectly / not converted m and / or an incorrectly calculated F allow 0.96 or $0.956(\mathrm{~m} / \mathrm{s})$
alternative method

$$
F=0.30 \times 1.7 \times 0.050(1)
$$

$$
F=0.0255(\mathrm{~N})(1)
$$

$$
m=0.004(0 \mathrm{~kg})(1)
$$

$$
\begin{equation*}
0.0255=\frac{0.0040 \times \Delta v}{0.15} \tag{1}
\end{equation*}
$$

this mark may be awarded if m is incorrectly / not converted and / or F is incorrectly calculated

$$
\begin{equation*}
\Delta v=\frac{0.0255 \times 0.15}{0.0040} \tag{1}
\end{equation*}
$$

this mark may be awarded if m is incorrectly / not converted and / or F is incorrectly calculated
$\Delta v=0.95625(\mathrm{~m} / \mathrm{s})(1)$
allow a correct calculation using an incorrectly / not converted m and / or an incorrectly calculated F allow 0.96 or $0.956(\mathrm{~m} / \mathrm{s})$
2. (a) motor (effect)
(b) current creates a magnetic field (around the coil)
(which) interacts with the permanent magnet field
producing a (resultant) force causing the coil/cone to move
(when the) direction of the current reverses, the direction of the (resultant) force reverses (producing a sound wave)
allow coil/cone for force allow backwards for reverses
(c) the student changed two variables at the same time allow only one variable should be changed at a time
(so) it is not possible to know the effect of each variable
3. (a) any two correct lines drawn from the top of the visitor and passing through the lens allow construction lines that are not dashed
image drawn at the correct position and with the correct orientation
mark only scores if first two marks scored.
a convex lens diagram scores 0 marks

(b) Decreases
(c) Iron
(d) there is a current in the solenoid / circuit allow a charge flows through the solenoid / circuit
creating a magnetic field
allow the solenoid / coil is magnetised
attracting the bolt
(e) $1.50 \mathrm{~cm}=0.015 \mathrm{~m}$
$2.88=k \times 0.015$
this mark may be awarded if distance is incorrectly/not converted
$k=2.88 / 0.015$
this mark may be awarded if distance is incorrectly/not converted
$\mathrm{k}=192(\mathrm{~N} / \mathrm{m})$
allow a correctly calculated answer using an incorrectly/not converted distance
(f) Any two from:

- increase the current (in the solenoid / circuit)
allow any sensible suggestion for increasing the current such as increasing the p.d. / power of the battery OR using lower resistance wire in the solenoid
- add more turns to the solenoid
do not allow increase the number of coils
- use a spring with a lower spring constant allow use a weaker spring

4. (a) to vary the (output) potential difference allow different devices require different potential differences
so that you don't need a different generator for each type of device allow so that it is compatible with different devices do not allow answers in terms of power
(b)
$\frac{1.5}{5.0}=\frac{150}{N_{s}}$
$N_{s}=\frac{150}{0.3}$
$N_{s}=500$
(c) the coil moves through the magnetic field
or
the coil cuts magnetic field lines
1
a potential difference is induced (across the coil)
there is a complete circuit, so a current is induced (in the coil)
every half turn the potential difference reverses direction
so (every half turn) the current changes direction
(d) provides a continuous / moveable contact / connection (between the coil and the transformer / contacts / brushes)
or
stops the wires from twisting together
(e) (after disconnection) there is no induced current
so no magnetic field (produced around / by the coil)
to oppose the movement of the coil
5. (a) chicken

> allow a correct answer indicated in Table 3 provided the answer space in blank
(b) 2×10^{-6}
(c)
an answer 0.025 (m) scores 4 marks
time $=8 \mu \mathrm{~s}=8 \times 10^{-6}(\mathrm{~s})$
or
$4 \times$ their answer to part (b)
subsequent marks may be scored if the number of squares is miscounted or $t=2 \mu$ s is used

$$
\begin{aligned}
\text { distance }= & 1 / 2 \times 6300 \times 8 \times 10^{-6} \\
& \text { allow } 8 \times 10^{3} \text { or } 8 \times 10^{-3} \text { or } 8 \times 10^{-9} \text { for } 8 \times 10^{-6}
\end{aligned}
$$

$$
\text { distance }=0.0252(\mathrm{~m})
$$

allow a correctly calculated answer using 8×10^{3} or 8×10^{-3} or 8×10^{-9}

$$
\text { distance }=0.025(\mathrm{~m})
$$

allow a calculated value correctly rounded to 2 sig figs
an answer $0.050(m)$ scores 3 marks
an answer 0.05 or 0.0504 (m) scores 2 marks
(d) to convert (the pressure variations in) sound (waves) into variations in current / p.d allow electrical signal for variations in current / p.d.
do not accept amplifies sound
(e) sound (waves) cause the diaphragm to vibrate diaphragm moves is insufficient
the diaphragm causes the coil / wire to vibrate
do not accept moves the coil / wire up and down
if m.p. 1 and m.p. 2 do not score, allow sound (waves)
cause the coil / wire to vibrate for 1 mark
the coil / wire moves through the magnetic field
or
the coil / wire cuts magnetic field lines
a potential difference is induced (across the ends of the coil / wire) allow induced current for induced p.d.
6. (a) field lines going in, (through) and out of the solenoid

allow field lines only visible outside the cardboard tube allow a bar magnet shaped field with lines above and below the solenoid
(b) the rods become (induced) magnets
allow the rods are (temporarily) magnetised
ignore rods repel
do not accept rods become charged
with the same polarity (at each end)
(c) changed two (independent) variables (at the same time)
allow need to keep current or number of turns constant
allow should only change one variable (at a time)
allow current and number of turns both changed ignore fair test
so it is not possible to know the effect of one (independent) variable or the other
(d) (increasing the current) increases the strength until the strength reaches a maximum value
allow weight (held) for strength of electromagnet
ignore a given current value for when maximum
strength happens
(e) increasing the number of turns from 10 to 20 increases the strength more than increasing from 20 to 30
a general trend is required

(b) 0.4
(c) wave speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(d) $7200=0.4 \times$ wavelength
wavelength $=\frac{7200}{0.4}$
wavelength $=18000(\mathrm{~m})$
allow up to full marks for ecf using their answer to part
(b)
a method shown as
$7200 \times 2.5=18000$
scores 0 marks
an answer 18000 scores 3 marks
(e) because S-waves cannot travel through a liquid
and S-waves do not travel through the (outer) core allow some (seismic) waves cannot travel through a liquid and do not go through the core for 1 mark
(f) magnetic field around the coil changes
or
the magnetic field (lines) cut by the coil allow the generator effect
(g) because the magnet changes direction
(h) stationary
(i) any two from:

- stronger magnetic field
allow stronger magnet allow heavier magnet bigger magnet is insufficient
- more turns on the coil bigger coil is insufficient do not accept more coils of wire
- turns pushed closer together
- spring with a lower spring constant
allow less stiff spring
allow weaker spring
do not accept add an iron core

8. (a) any one from:

- too few turns / coils on the secondary allow number of turns / coils on the primary was increased
- p.d. across the primary was reduced ignore human error
(b) the p.d. (across the secondary) goes above 2 V allow p.d. across secondary is higher than p.d. across primary after 20 turns
(c) it increases (until the nails reach a constant temperature)
(d) $\frac{640}{4}=\frac{V_{\rho}}{1.75}$
$V_{p}=\frac{640 \times 1.75}{4}$

$$
V_{p}=280(V)
$$

$280 \times I_{p}=336$
allow their calculated

$$
V_{p} \times I_{p}=336
$$

$I_{p}=1.2(\mathrm{~A})$
allow an answer that is consistent with their calculated value of V_{p}
or
$336=I_{s} \times 1.75(1)$
$I_{s}=\frac{336}{1.75}$
$\mathrm{I}_{\mathrm{s}}=192(\mathrm{~A})(1)$
$I_{p}=192 \times \frac{4}{640}$
allow
$I_{p}=$ their calculated $I_{s} \times \frac{4}{640}$
$I_{p}=1.2(A)(1)$
allow an answer that is consistent with their calculated value of I_{s}
an answer of 1.2 (A) scores 5 marks
9. (a) at least three circles drawn
clockwise arrows on circles
allow 1 mark for one or two circles with clockwise arrows
(b) 4×10^{-6}
(c) the sides of the coil (parallel to the magnet) experience a force (in opposite directions) allow the current creates a magnetic field ignore Fleming's Left Hand Rule
the forces cause moments that act in the same (clockwise / anticlockwise) direction or
the moments cause the coil to rotate (clockwise / anticlockwise)
allow the magnetic fields interact to create a pair of
forces (acting in opposite directions)
or
allow the magnetic fields interact causing the coil to rotate
(each half-revolution) the two halves of the (rotating) commutator swap from one (carbon) brush to the other
(each half-revolution) the commutator reverses the current (in the coil)
or
keeping the forces in the same direction (keeping the coil rotating)
allow keeps the current in the same direction relative to the (permanent) magnetic field
10. (a) It is easily magnetised.
(b) p.d. across the secondary coil is smaller (than p.d. across the primary coil)
(c) ratio $\underline{V}_{\underline{p}}=\underline{6}$
$\mathrm{V}_{\mathrm{s}} 12$
accept any other correct ratio taken from the graph
$\underline{6}=\underline{50}$
$12 \mathrm{~N}_{\mathrm{p}}$
use of the correct turns ratio and substitution or correct transformation and substitution
$N_{p}=100$
allow 100 with no working shown for 3 marks
(b) increase the strength of the magnet
or
increase the current
(c) $4.8 \times 10^{-4}=\mathrm{F} \times 8 \times 10^{-2}$
$\mathrm{F}=6 \times 10^{-3}(\mathrm{~N})$
$6 \times 10^{-3}=B \times 1.5 \times 5 \times 10^{-2}$
$B=\frac{6 \times 10^{-3}}{7.5 \times 10^{-2}}$
$B=8 \times 10^{-2}$ or 0.08
allow 8×10^{-2} or 0.08 with no working shown for 5 marks a correct method with correct calculation using an incorrect value of F gains 3 marks

Tesla
accept T
do not accept t
12. (a) in a longitudinal wave the oscillations / vibrations are parallel to the direction of energy transfer.
accept wave travel for energy transfer throughout
in a transverse wave the oscillations / vibrations are perpendicular to the direction of energy transfer.
(b) accept any sensible suggestion eg a vibrating drum skin does not move the air away to create a vacuum (around the drum)
(c) Level 3 (5-6 marks):

A detailed explanation linking variations in current to the pressure variations of a sound wave, with a logical sequence.

Level 2 (3-4 marks):

A number of relevant points made, but not precisely. A link between the loudspeaker and a sound wave is made.

Level 1 (1-2 marks):

Some relevant points but fragmented with no logical structure.

0 marks:

No relevant content.

Indicative content

the current in the electrical circuit is varying
the current passes through the coil
the coil experiences a force (inwards or outwards)
reversing the current reverses the force
the size of the current affects the size of the force
the varying current causes the coil to vibrate
the (vibrating) coil causes the cone to vibrate
the vibrating cone causes the air molecules to move
the movement of the air molecules produces the pressure variations in the air needed for a sound wave
the air molecules bunch together forming compressions and spread apart forming rarefactions

